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Abstract As machine learning models are increasingly being deployed in real-world
applications, these models would exhibit bias toward specific demographic groups.
In this chapter, we discuss the topic of algorithmic fairness in machine learning.
First, we divide the existing fairness notation into two broad groups and introduce
some representative notation. Then, we introduce three categories of fairness mitiga-
tion algorithms, i.e., pre-processing, in-processing, and post-processing mitigation
methods. Finally, we discuss research challenges, potential future research direc-
tions, and the relationship between fairness in machine learning and other areas.

1 Definitions of Fairness

Nowadays, machine learning models have made remarkable breakthroughs in a
number of fields, due to developments in complex models such as deep neural net-
works (DNNs) and the collection of numerous large-scale datasets. Machine learn-
ing models are increasingly being used in real-world applications that interact with
end users, such as healthcare, recommender system, criminal justice, recruitment,
etc [53]. Recent studies indicate that these machine learning models might exhibit
discrimination behavior for certain demographics. For example, the error rates of
darker-skinned females (up to 34.7%) are much higher than those of lighter-skinned
males (up to 34.7%) [5]. This dramatic accuracy disparity could cause significant
damage to the group of darker-skinned women. Similarly, the AI-based recruiting
tool of a tech company shows discrimination against women by penalizing resumes
with the keyword ‘women’. The bias and unfair behavior of real-world AI systems
could cause significant harm to individuals and our society. As such, there is grow-
ing interest from both academia and industry in addressing the problem of unfair-
ness [59, 63, 19].
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1.1 What Does It Mean by Fairness?

It is not trivial to give the definition of fairness, since fairness is a broad topic and
its definitions are significantly dependent on specific application domains. We first
analyze two case studies below.
Case Study 1: Predicting the length of stay. Suppose that a hospital wants to
develop an AI system to predict the length of stay for inpatients. More resources
should be given to hospitalized inpatients who are expected to be discharged sooner
to avoid delays. The system might predict that residents of ZIP codes in African-
American neighborhoods will stay longer. As a result, the hospital would allocate
more resources to European Americans and much fewer resources to African Amer-
icans [48].
Case Study 2: Voice recognition of ASR systems. Automated speech recognition
(ASR) algorithms are used to translate spoken language into text. They have been
applied in many commercial products, such as virtual assistants of smart speakers,
automated closed captioning, etc. There are noticeable racial disparities in these
ASR systems, according to recent studies [34]. In particular, African-American
speakers have a word error rate on average of 0.35, which is significantly higher
than the word error rate on average for European Americans, which is 0.19.

We can see from these two case studies that a system could have a different
impact on humans of different demographics, including gender, race, sexual orien-
tation, and age, to name a few. From the perspective of impact, we can group the
harms that groups or individuals can receive into the following two groups [15, 3].

• Resources and Opportunities Allocations Harm: This corresponds to Case
Study 1. These harms can occur in high-stake applications that involve oppor-
tunities, resources, or information. Representative applications include employ-
ment, criminal justice, education, etc. The impact often indicates whether end
users will have access to resources and opportunities, such as receiving a job
offer from a company, having a house loan granted, or getting accepted into a
school. Some underprivileged groups, such as women and African Americans,
would suffer more allocation harm in this situation.

• Quality of Services Harm: This corresponds to Case Study 2. This kind of harm
is more prevalent in some service settings, such as speech recognition, facial
recognition, machine translation, etc. The bias problem corresponds to service
quality that an end user can receive. Machine learning techniques do not always
benefit all demographic groups equally, and certain underprivileged populations
have substantially lower prediction accuracy. For instance, African Americans
have substantially worse prediction accuracy than European Americans for ap-
plications such as speech recognition and facial recognition.
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Table 1 Categorization of the fairness problem in machine learning and representative examples,
where the examples are taken from [15]. We classify fairness problems into two categories: pre-
diction outcome discrimination and prediction quality disparity. The first category would make
resource allocations and opportunities harmful. In contrast, the second category would cause harm
to the quality of services.

Class Representative examples

Outcome Discrimination Employment: The recruiting tool believes that men are more qualified
and shows bias against women.

Loan Approval: The loan eligibility system negatively rates people belonging
to certain ZIP code, causing discrimination for certain races.

Criminal Justice: The recidivism prediction system predicts that black inmates
are three times more likely to be classified as ‘high risk’ than white inmates.

Quality Disparity Facial Recognition: Facial recognition performs very poorly for
female with darker skin.

Language processing: Language identification models perform significantly
worse when processing text produced by people belonging to certain races.

1.2 Two Families of Algorithmic Fairness

Based on the harms that people could receive, we group fairness measurements into
two broad categories from the machine learning model prediction perspective. It
includes (i) prediction outcome discrimination and (ii) prediction quality disparity,
which correspond to the two types of harm introduced in the last section. More
representative examples are given in Table 1.

Before covering the fairness measurements, we first introduce the notation used
in this chapter. We consider the typical classification problem using labeled exam-
ples: {x,y,a}∼ pdata. Here, x∈X denotes the input feature and y∈Y represents the
label that we want to predict. Furthermore, a∈A= {0, ...,K} is a K categorical pro-
tected attribute annotation, such as race, gender, and age. For protected attributes,
we assume that there exist certain unprivileged groups and privileged groups where
we denote a = 0 and a = 1 as the unprivileged group and the privileged group, re-
spectively. Take a loan application as an illustration. The unprivileged group a = 0
could be African Americans and the privileged group a = 1 would include Euro-
pean Americans. The privileged group denotes a group that has historically enjoyed
a systematic advantage. Here, the goal is to learn the classification model that can
be denoted as f (x) : X → Y . The model f (x) can be any of the machine learning
models, e.g., the traditional machine learning model such as random forests or deep
neural network models (DNNs) such as convolutional neural networks.
Prediction Outcome Discrimination. This is the most widely used group fairness
family that expects parity in statistical performance between groups. It tries to min-
imize the gap between groups and aims to optimize fairness metrics such as demo-
graphic parity and equality of opportunity. We introduce the three most widely used
parity-based group fairness metrics in this category: demographic parity, equality of
opportunity, and equality of odds.
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Demographic parity [18] calculates the favorable outcome gap between the un-
privileged group (a = 0) and the privileged group (a = 1):

FDP = p(ŷ = 1|a = 0)− p(ŷ = 1|a = 1), (1)

where ŷ is the model prediction and 1 denotes the favorable outcome, such as obtain-
ing a loan, receiving an offer of work, and avoiding jail. In addition to calculating
the gap, some other works formulate it into the ratio between two groups.

FDP =
p(ŷ = 1|a = 0)
p(ŷ = 1|a = 1)

(2)

Equality of opportunity metric [28, 65] is defined as the true positive rate differ-
ence between the unprivileged group and the privileged group:

FEOP = p(ŷ = 1|a = 0,y = 1)− p(ŷ = 1|a = 1,y = 1). (3)

Unlike demographic parity, the calculation of the equality of opportunity depends
on the ground truth label y.

Equality of odds metric [28] also takes into account the false positive rate:

FEOO = p(ŷ = 1|a = 0,y = 0)− p(ŷ = 1|a = 1,y = 0)+FEOP. (4)

For fair models, the value of all three parity-based metrics should be as close to 0 as
possible if we calculate the gap between two groups. A larger gap denotes greater
discrimination for the unprivileged group. Similarly, the closer the ratio between
two groups is to one, the better the model.

The three aforementioned measurements are defined from the perspective of
group fairness. On the other hand, we can also require the fairness to be satisfied
from the individual fairness perspective. This requires that individuals with simi-
lar profiles (especially those with different demographic groups) are treated simi-
larly [23]. The most common definition is as follows:

iff p(xi)≈ p(x j)||d(xi,x j)≈ 0, (5)

where xi and x j denote individuals, and d : X ×X →R is a distance metric to quan-
tify the similarity of individuals. Note that the distance metric should be carefully
designed to fit the characteristics of the underlying task [16].
Prediction Quality Disparity. It is another widely used group fairness family,
which can also be called Rawlsian Max-Min fairness. A typical example is that
darker skin-tone female groups have much higher misclassification rates than lighter
skin-tone male groups. Similarly, the error rate for black speakers is much higher
than that for white speakers for automated speech recognition (ASR) systems. The
goal of Max-Min fairness is to improve the worst group performance [37].

maxa∈AU(ŷ,y,a = 0). (6)
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Here U is the target utility metric for the task, such as accuracy, precision, recall,
F1, etc. The goal is to maximize the performance U of the group with the poorest
performance a = 0 (such as women) without sacrificing the performance of other
groups (such as men). Alternatively, we can optimize the performance difference
between the privileged group and the unprivileged group.

FQP = U(ŷ,y,a = 0)−U(ŷ,y,a = 1). (7)

Here, the absolute value of FQP is supposed to be as small as possible for fair mod-
els. The goal of both formulations is to improve the quality of the prediction of the
unprivileged group, thus alleviating the quality of the service harm to them.
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(a) Parity based fairness (b) Max-Min fairness

Fig. 1 Illustration of difference between (a) prediction outcome discrimination and (b) prediction
quality disparity using toy examples. Suppose that we have 2,000 training samples in total, and the
number below each box indicates the training number for that category. For prediction outcome
discrimination (a), we can group the existing training data into 4 groups: females with positive
label, females with negative label, males with positive label and males with negative label. The
training set has imbalanced distribution, where females are more associated with negative label,
while males are more associated with positive label. A desirable model is to rely on task-relevant
features for prediction. In this case, however, the trained models would over-associate the fairness
sensitive information relevant to females with negative labels, and vice versa. It can be explained
by the simplicity bias, where the fairness sensitive features are simple and highly correlated with
class labels [52]. Thus the model will highly rely on them for prediction, which would result in the
discrimination of the model towards females and lead to the statistical parity difference between
two groups. In contrast, for (b) prediction quality disparity, the unprivileged group, e.g., African
Americans here, has much fewer training samples compared to the privileged group, e.g., European
Americans. This is similar to the long-tailed classification scenario, where the unprivileged group
corresponds to the tail category. Machine learning models are designed to optimize for the overall
performance. If they can not simultaneously optimize for all groups, they will optimize for the
majority groups instead. As a result, the models will have poor prediction performance for the
unprivileged group.

1.3 Origins of Bias

In this section, we discuss the origins of algorithmic unfairness. Bias of many dif-
ferent kinds can result in unfair algorithms. Be aware that bias in machine learning
is a broader topic. The texture bias in the convolutional neural network (CNN) is a
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Table 2 The origins of algorithmic bias. Here, we introduce the three most representative types of
bias. The sampling bias is from the data perspective, while the other two types of bias are from the
modeling perspective.

Sampling Bias Amplification Bias Underrepresentation Bias

Outcome Discrimination ✓ ✓
Quality Disparity ✓ ✓

typical example [26, 29]. Compared to bias in machine learning, fairness is a more
specialized field because only biases that are important to humans may be referred
to as fairness problems. We only discuss the three bias families that are most likely
to lead to the fairness problem (see Table 2), which can be used to explain most
types of algorithmic unfairness, as discussed in the previous section.

• Sampling Bias. This is also called selection bias in the literature [44]. This is
from the data perspective. Sampling bias occurs when the data set’s examples
are chosen in a way that is not representative of the real-world distribution of the
data. Sampling bias can appear in a variety of ways. Both prediction outcome
discrimination and quality disparity can be explained from the perspective of se-
lection bias. However, there are some significant differences, and we illustrate the
difference using the toy examples in Figure 1. More specifically, for the discrim-
ination of the prediction outcome, the proportion of women with positive labels
is much lower compared to that of men. As a result, models tend to learn that
the unprivileged woman group is correlated with a negative label and vice versa.
In contrast, for the prediction quality disparity, the number of African American
training samples is much smaller than that of European Americans.

• Algorithmic Amplification Bias. It denotes the tendency of machine learning
models to amplify the biases present in the data on which they are trained [51].
This applies mainly to discrimination by prediction outcome. Unlike certain other
types of bias, it is the result of the algorithm and cannot be exclusively attributed
to the bias of the dataset [61]. For example, the likelihood of cooking images that
contain females is twice that of those that contain males in the training set. After
model training, machine learning models amplify this disparity five times [67].

• Underrepresentation Bias. In real-world applications, data for some segments
of the population can be collected less informatively or more imperfectly. Fur-
thermore, due to the difference in characteristics between different protected
groups, machine learning models sometimes cannot optimize all groups simul-
taneously [15]. As a result, the model would optimize for the majority group
(i.e., the privileged group). This results in a poor representation captured by the
model for the minority group (i.e., the unprivileged group). Eventually, the mod-
els would have a lower prediction quality for the underrepresented group.

Prediction Outcome Discrimination v.s. Quality Disparity Based on the analysis
in previous subsections, we summarize the significant differences between the two
families of fairness notation.
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First, the causing reasons are different. For prediction outcome discrimination,
due to sampling bias, the privileged group is more correlated with the favorable la-
bel and vice versa. Machine learning models have captured this kind of data bias
and even amplify data bias through spurious learning (i.e., shortcut learning) [25].
Specifically, there are usually both fairness-sensitive features and task-relevant fea-
tures in the input. The models have over-associated these fairness-sensitive features
with certain class labels, rather than learning the underlying task through task-
relevant features. As a result, the model would show discrimination against the
unprivileged groups. The prediction quality disparity is typically due to the long-
tailed classification problem. Specifically, the tail of the distribution contains data
from the unprivileged group and has only very few training samples. Consider the
English-based speech recognition problem as an example. There are much fewer
training data from non-White groups (such as Asians) in the training corpus than
from White groups. Therefore, the models are optimized for the privileged group
and perform poorly for the underprivileged groups.

Second, although both groups of fairness concepts mean that the profit of the
unprivileged groups has been sacrificed, the application domains are different, and
thus the impacts are different (see Section 1.1). For the discrimination of the predic-
tion outcomes, there generally exist two opposite labels y, where y = 1 denotes the
desirable outcome and y = 0 denotes the undesirable outcome. Unprivileged groups
tend to get predictions of an undesirable outcome. Thus the impact for them is the
withholding of resources and opportunities. In contrast, there does not necessarily
exist an opposite outcome y = 0 and y = 1 for the prediction quality disparity prob-
lem. In addition, it typically affects the quality of service and thus hurts the user
experience of unprivileged groups.

2 Bias Mitigation Algorithms

In this section, we present mitigation algorithms that aim to alleviate the bias issue of
machine learning models and improve fairness. A typical machine learning life cycle
contains three stages: data collection and preparation, model training, and model
deployment. As such, we group fairness mitigation methods into three categories
based on the machine learning life cycle, including pre-processing, in-processing,
and post-processing mitigation approaches [2].

We further divide mitigation methods into prediction outcome discrimination and
prediction quality disparity, due to their significant differences in the mechanisms.
Furthermore, it is assumed that existing mitigation methods would result in a fair-
ness and utility trade-off for discrimination of the prediction outcome. On the con-
trary, prediction quality disparity mitigation algorithms could simultaneously im-
prove fairness and utility.
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Fig. 2 Mitigation methods and corresponding examples. Based on the typical machine learning life
cycle, we group the mitigation methods into pre-processing, in-processing, and post-processing
three categories. Based on this, we further split methods into Outcome Discrimination Quality
Disparity two groups. For each sub-group, we list several representative examples.

2.1 Pre-processing Methods

Both problems of discrimination of the prediction outcomes and the disparity in
prediction quality are caused by unbalanced and skewed training sets. To address
this issue, pre-processing methods are proposed with the goal of creating more high-
quality training data.

2.1.1 Prediction Outcome Discrimination

The prediction outcome discrimination is mainly caused by the imbalanced condi-
tional distribution of fairness-sensitive features in the input with class labels. First,
one straightforward idea is to remove these fairness features, e.g., ZIP code in tabu-
lar dataset applications. Second, some mitigation methods replace fairness-sensitive
features with alternative values, as removing features is not possible in many appli-
cations. For example, removing words from texts could cause grammar errors. The
use of counterfactual data augmentation to build a balanced training set is a natural
mitigation technique within this family. It might, to some extent, reduce the degree
of discrimination of trained machine learning models. For example, an auxiliary
dataset is created by replacing male entities with female entities and vice versa [68].
The auxiliary dataset and the original dataset can be combined to create a balanced
dataset. Models trained on this balanced dataset significantly alleviate bias, while
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not sacrificing the original task performance. It is also worth noting that counter-
factual data augmentation could result in an increased balance in terms of explicit
sensitive features. However, discrimination can still be caused by those implicit sen-
sitive features. It is extremely challenging to alleviate all kinds of statistical shortcut
cue that the model could exploit. On the other hand, counterfactual data augmenta-
tion also requires massive domain expertise to ensure that the augmented data are
reasonable and fall into the original training data distribution. As a result, machine
learning models could still capture information such as gender, race in intermediate
representation and eventually show discrimination for the unprivileged group.

2.1.2 Prediction Quality Disparity

The reason for the quality disparity problem is that the unprivileged group has much
fewer training data compared to the privileged group. Therefore, data sampling and
data augmentation can be used to make the training set more balanced. First, data
sampling can be used to increase the relative ratio of the unprivileged group. As
such, we can have better representations for the unprivileged group. However, this
has the risk of deteriorating the performance of the privileged group. Second, the
data augmentation method can be used to collect more training data for the unpriv-
ileged group. During the data collection process, crowd workers are encouraged to
collect data from a diverse data source. Consider the racial disparity in speech recog-
nition application; we can use more varied training datasets that include African-
American vernacular English [34]. However, this could be costly in practice. Al-
ternatively, generative adversarial networks (GANs) can be used to create synthetic
data for underrepresented and unprivileged groups [22].

2.2 In-processing Methods

In this section, we introduce in-processing based mitigation methods. These meth-
ods add auxiliary regularization terms during the model training process to the over-
all objective function, explicitly or implicitly regularizing the model to achieve cer-
tain fairness metrics.

2.2.1 Prediction Outcome Discrimination

For the discrimination of prediction outcomes, we focus on introducing mitigation
methods that are applicable to deep neural networks (DNNs).

Consider that the classification model f (x) can be represented as f (x) = c(g(x)).
Here, g(x) : X →Z represents the feature encoder and g(x) = z is the representation
of x obtained from a DNN model. The predictor c(z) : Z → Y is the multi-layer
classification head. It is represented by the top layer(s) of the DNN, which takes the
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encoded representation z as input and maps it to the softmax probability. The final
prediction of the model is indicated by ỹ = argmaxc(z). It is worth noting that the
split of the model into encoder and classification head depends on the architecture
of the model and the classification task at hand. For example, we can take the 12-
layer BERT-base [12] model as the feature encoder and the last two fully connected
layers as the classification head. Similarly, for instance, consider the 19-layer VGG
model for image classification tasks [54]. We can take the first 16 convolution layers
as the encoder and the last 3 fully connected layers as the classification head.
Debiasing Representations. A line of methods attempts to learn debiased repre-
sentations g(x), which do not contain information about sensitive attributes. The
most representative example is adversarial training [58, 62, 17, 66]. In addition to
the classification head c(z), we also need an adversarial classifier h(z), which is uti-
lized to predict protected attributes z. The adversarial training process is indicated
below.

argminh L(h(g(x)),a)
argminh,c L(c(g(x)),y)−λL(h(g(x)),a) (8)

In the first step, we train the adversarial classifier h(z) by maximizing its ability
to predict the protected attribute. In the second step, we train the task classifier
c(z) together with the adversarial classifier h(z), where the goal is to maximize
the ability of the task classifier to predict the task label y while minimizing the
ability of the adversarial classifier h(z) to predict the protected attribute. In this
way, sensitive information can be partially removed from the representation g(x).
Adversarial training is advantageous in that it is model-agnostic and can be used in
any application where DNNs are the classification model, e.g., image classification,
text classification, etc. However, this line of methods may not be stable in training.
In addition, it could suffer from a large fairness and utility trade-off.
Debiasing Classification Head. Some methods propose to learn the debiased task
classification head c(z). The key motivation is that the classification head is much
more time-efficient to be debiased, compared to debiasing the representation. For
example, a work aims to reduce discrimination of DNN models by only debias-
ing the classification head c(z), with the biased representation encoder g(x) as in-
put [14]. When training the classification head, for an input sample {x1,y,a1}, they
randomly select another sample {x2,y,a2}, with the same class label y but with a
different sensitive attribute a2 compared to a1 in the input sample. Then they cal-
culate the corresponding representations z1 = g(x1) and z2 = g(x2) and retrain the
classification head using the neutralized representation z = z1+z2

2 as input. For the
supervision label y for the classification head, they use the neutralized soft prob-
ability y = p1+p2

2 after temperature scaling. Given the logit vector z1 for input x1,

the probability of class i is calculated as p1,i =
exp(z1,i/T)

∑ j exp(z1, j/T)
, where T ≥ 1. With the

neutralized representation and neutralized soft probability, the classification head is
trained using the mean squared error (MSE) loss function.

LMSE = (ŷi − y)2 =

{
c
(

1
2

z1 +
1
2

z2

)
−
(

1
2

p1 +
1
2

p2

)}2

. (9)
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The aforementioned training program has two key advantages. From the viewpoint
of the input, neutralizing the representations prevents the model from capturing
the unfavorable association between the information in the representation that is
fairness-sensitive and the class labels. From the viewpoint of the output, the soft-
ened label encourages the model to make similar predictions for various sensitive
groups.

To further enforce the model to ignore sensitive attributes, they construct aug-
mented training samples using a hyperparameter λ to control the degree of neutral-
ization of the samples {z1, p1,y} and {z2, p2,y}. The augmented neutralized sample
is given by z = λ z1 +(1−λ )z2, λ ∈ [ 1

2 ,1). They encourage the classification head
to give similar prediction scores for the augmented and neutralized sample (with
λ = 1

2 ). The regularization loss is given by:

LSmooth = ∑
λ∈[ 1

2 ,1)

|c(λ z1 +(1−λ )z2)− c(
1
2

z1 +
1
2

z2)|1. (10)

Varying λ can control the degree of sensitive information for augmented samples.
It is utilized to penalize large changes in softmax probability as we move along the
interpolation between two samples. The final loss function is the linear combination
of the MSE loss with the regularization term as follows:

L= LMSE +αLSmooth. (11)

The classification head is trained using the loss function in Eq. (11), where α con-
trols the degree of smoothness. Eventually, the original encoder and re-trained clas-
sification head are combined as the final debiased network.

Some other methods try to debias the whole classification model. These methods
add a regularizer to the model, where the parameters of the entire model are updated.
Under this umbrella, we introduce three typical methods: explainability-based reg-
ularization, direct regularization of fairness metrics, and implicit regularization.
Debiasing Entire Model: Explainability-based Method. First, one of the most
representative methods is to regularize the local explanation of the model floc (x)
with annotations from the domain expert [39]. The general format of the loss func-
tion can be denoted as follows.

L(θ ,x,y,r) = d1(y, ŷ)︸ ︷︷ ︸
Prediction

+λ1d2 ( floc (x),r)︸ ︷︷ ︸
Fairness

+ λ2R(θ)︸ ︷︷ ︸
Reqularizer

, (12)

where the first and third terms are the standard loss functions to train the DNN
models, such as cross-entropy loss. The second term is the additional regularizer to
achieve fairness. The two hyperparameters λ1 and λ2 are used to balance the three
terms. Here, r are the sensitive feature annotations of the domain expert. floc (x) is
the local explanation of the model for the input sample x that could be implemented
using explanation algorithms [13] such as the integrated gradient method [55]. More
specifically, floc (x) is a vector of the same length as the input feature x, where each
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dimension of floc (x) indicates the contribution of each feature xi within the input
sample x to the prediction of the model f (x). Note that not all local explanation algo-
rithms can be used here, such as LIME [49] and SHAP [42]. Instead, floc (x) should
be end-to-end differentiable, so that backpropogation can be used to update model
parameters. The motivation is to suppress the model’s attention on fairness-sensitive
features and instead encourage the model to focus more on task-relevant features.
An example is toxic classification, where explanations at the feature level (obtained
from the integrated gradient) are encouraged to be consistent with the rationale of
domain experts [39]. More specifically, the models would predict every sentence
containing the word ‘gay’ as a toxic comment. Similarly, sentences with word ‘jew’
and ‘black’ would be given negative prediction for the sentiment analysis task. The
rationale would specify the list of fairness-sensitive features, and the regulariza-
tion would penalize the model’s attention on these sensitive features. Although this
method is effective in terms of bias mitigation, it requires sensitive feature annota-
tions. This presents some challenges. First, annotating the exclusive list of sensitive
features is expensive and time consuming. Furthermore, it is not clear which subset
of features is sensitive to fairness, especially for real-world applications.
Debiasing Entire Model: Fairness Metric Regularization. Second, in addition to
regularization of explanations, another most commonly used debiasing method is
to directly add fairness metrics to the loss function. We will use the demographic
parity metric as an illustration below.

L(θ ,x,y,a) = d1(y, ŷ)︸ ︷︷ ︸
Prediction

+λ1FDP︸ ︷︷ ︸
Fairness

+ λ2R(θ)︸ ︷︷ ︸
Reqularizer

, (13)

where FDP is the demographic parity metric. A larger λ1 will impose stronger reg-
ularization, at the expense of a greater accuracy trade-off. Note that fairness metrics
such as FDP are not end-to-end differentials. Therefore, we need to relax the calcu-
lation of the fairness metric in the following format [43, 9].

FDP =
∣∣Ex∼P0 f (x)−Ex∼P1 f (x)

∣∣ (14)

where P0 = P(· | a = 0) and P1 = P(· | a = 1), denoting the distribution of two
protected groups. We can calculate the relaxed fairness metric by sampling two
protected groups from a batch of data during the implementation stage. Similarly,
we can regularize the equality of odds metric.

L(θ ,x,y,a) = d1(y, ŷ)︸ ︷︷ ︸
Prediction

+λ1FEOO︸ ︷︷ ︸
Fairness

+ λ2R(θ)︸ ︷︷ ︸
Reqularizer

. (15)

The fairness metric FEOO also does not have end-to-end differential ability. It can
be relaxed in the following formulation [43, 9].

FEOO = ∑
y∈{0,1}

∣∣∣Ex∼Py
0

f (x)−Ex∼Py
1

f (x)
∣∣∣ (16)
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where Py
0 = P(· | a = 0,Y = y),y ∈ {0,1} and Py

1 = P(· | a = 1,Y = y),y ∈ {0,1}.
They are also calculated by using a batch of data. It should be noted that optimizing
either the demographic parity or the equality of odds metric may only improve the
specific metric rather than simultaneously improving all fairness metrics.
Debiasing Entire Model: Implicit Regularization. Third, we do not need to ex-
plicitly add the fairness term, as used in Equation 12. As such, the debiasing algo-
rithm takes the following formulation.

L(θ ,x,y,a) = d1(y, ŷ)︸ ︷︷ ︸
Prediction

+ λ2R(θ)︸ ︷︷ ︸
Reqularizer

. (17)

Here, the regularizer itself can achieve the debiasing effect. An implementation of
this debiasing method is to use weight decay [46].

L(θ ,x,y,a) = d1(y, ŷ)︸ ︷︷ ︸
Prediction

+ λ2∥θ∥2
2︸ ︷︷ ︸

Weight decay

. (18)

In addition, we can implement this using spectral decoupling [46].

L(θ ,x,y,a) = d1(y, ŷ)︸ ︷︷ ︸
Prediction

+ λ2∥ŷ∥2
2︸ ︷︷ ︸

Spectral decoupling

. (19)

Both weight decay and spectral decoupling are motivated by the perspective of
shortcut learning [25]. Specifically, models trained with cross-entropy loss tend to
rely on a small subset of features (in this case, fairness-sensitive features) for pre-
diction and fail to learn other predictive features (here, task-relevant features). This
phenomenon is named gradient starvation [46]. Both weight decay and spectral
decoupling can not stop the model from learning fairness-sensitive features, and in-
stead encourage the models to suppress their attention on fairness-sensitive features.
In other words, they are useful primarily for altering the model’s classification head.
Comparisons of the Three Paradigms. We provide the pros and cons of the three
mentioned debiasing paradigms, that is, debiasing the representation, the classifica-
tion head, and the entire model.

• Recent research suggests that it can be challenging to eliminate biased informa-
tion from representations. Experimental findings have revealed two drawbacks
of adversarial training. At first, it might also remove certain information rele-
vant to tasks. Therefore, there would be a significant trade-off between fairness
and utility. Second, there may be significant variation between different runs, as
adversarial training is not stable in training.

• The more precise classification boundary is the main advantage of debiasing the
classification head. Assume that there are both features relevant to the task and
features sensitive to fairness in the learned deep representations. The implicit
result of this type of debiasing is to enable the model to shift its focus from
fairness-sensitive features to task-relevant features.
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• Debiasing the entire model can simultaneously adjust the encoder and the clas-
sification head. However, the relative role of the encoder and the classification
head in terms of debiasing the entire model is unclear. It is an interesting direc-
tion to diagnose the debiased model to understand whether the improvement is
primarily due to the debiased representation or the refined decision boundary.

2.2.2 Prediction Quality Disparity

Many of the mitigation methods share the same philosophy as methods that address
the problem of long-tailed classification.

One of the most representative methods is reweighting [38]. It contains two steps,
where the goal of the first step is to identify the unprivileged groups. The identifica-
tion model is trained in only a few epochs. The assumption is that the biased model
would give low prediction accuracy for unprivileged groups.

E =
{
(xi,yi) s.t. f̂id (xi) ̸= yi

}
(20)

In the second step, the debiasing algorithm would give higher weights to these sam-
ples that correspond to unprivileged groups.

Jup-ERM (θ ,E) =

(
λup ∑

(x,y)∈E
ℓ(x,y;θ)+ ∑

(x,y)/∈E
ℓ(x,y;θ)

)
(21)

where λup is the weight of the reweighting. It is important to note that in this de-
biasing approach, we assume that we do not have access to the protected attribute
annotations. In contrast, if there are annotations for the protected attribute, we can
directly assign higher training weights to training samples from the unprivileged
group.

Another effective method is self-supervised pre-training (see Figure 3) [45]. This
is because, if the model is trained from scratch, the underprivileged group might
not be adequately represented in the labeled training dataset due to factors such as
sampling bias. The quality of the training data for unprivileged groups is much lower
than that of the privileged groups; either the number is much fewer or the quality of
the label is lower. As such, the machine learning model was unable to learn high-
quality representations for the unprivileged group. To bridge this gap, the objective
of pre-training is to learn good representations from unlabeled large-scale data (see
Figure 3 (b)). This pre-trained model can then be finetuned in the labeled data for
the downstream task.
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Fig. 3 Prediction quality disparity debiasing through self-supervised pre-training. The main bot-
tleneck of quality disparity is the poor representation of the unprivileged group. Unsupervised
pre-training could help learn high quality representations.

2.3 Post-processing Methods

This family of techniques performs the mitigation after training the machine learn-
ing model. We currently have a trained model. Mitigation can be used to alter the
model’s parameters and architectural structures or its prediction probability distri-
bution.

2.3.1 Prediction Outcome Discrimination

Two types of mitigation methods include model prediction calibration and sensitive
neuron pruning. It should be noted that the methods in the first category can be
utilized in any machine learning model, whereas the methods in the second group
can only be employed in DNN-based models.

First, we can calibrate the prediction of the models during the inference phase.
The probability of prediction of the model could indicate the confidence of the
model. For example, we can modify the predicted labels using a scheme that
solves the linear program to optimize the classifier for better equalized odds per-
formance [47]. In addition, the corpus-level constraint can be added to the existing
prediction model to encourage the output of the model to follow a desirable distri-
bution [67].

Second, after the model has been trained, we can identify neurons that encode
the concept related to protected attributes. These neurons can be named troubling
neurons. Then we can turn off the activation of neurons or remove the neurons.
For example, one work proposes to identify parameters that are not important for
unprivileged groups but important for privileged groups [64].

min∆Ea=0(θ), max∆Ea=1(θ) (22)
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which is then transformed into a single objective as follows:

min(∆Ea=0(θ)−β∆Ea=1(θ)), (23)

where β is used to control the trade-off between the importance calculation for the
unprivileged and the privileged groups. Furthermore, ∆E is calculated using the sec-
ond derivative of the parameters to quantify the increase in the prediction error after
the model is pruned. They first sample mini-batches from the unprivileged and priv-
ileged groups, respectively. Based on the calculation, they remove a small ratio of
parameters with the smallest values corresponding to Equation 23. This process is
repeated for certain iterations until the target fairness measurement is reached. Note
that the method based on neuron pruning could sacrifice model prediction perfor-
mance. The possible reason is that a neuron could capture multiple concepts [13]. In
other words, pruned neurons could also capture relevant information about the task.
As a result, this pruning might dramatically affect task performance.

2.3.2 Prediction Quality Disparity

As introduced earlier, the prediction quality disparity is mainly caused by the poor
representation learned by the machine learning models. Thus post-processing based
methods might not be as effective as pre-processing methods and in-processing
methods. However, we can improve prediction quality parity by learning from ap-
proaches that address the long-tailed classification problem, e.g., by modifying logit
values during the inference stage [30].

3 Opportunities and Challenges

The current practice in machine learning research is to divide existing data into train-
ing, validation, and test sets. The models are tested using some benchmark dataset
such as Adult Census Income [35], German Credit, ProPublica Recidivism (COM-
PAS) and CelebA [41]. We call it laboratory setting. It is time for researchers and
developers from academia and industry to consider the implications of debiasing
algorithms beyond the laboratory setting, i.e., real world scenarios. In particular,
the laboratory setting does not take into account the complexity of real-world ap-
plications. As we move from the laboratory to real-world scenarios, there are some
research challenges and opportunities that deserve the community’s attention.
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Fig. 4 Current research usually assumes that there is fairness and accuracy trade-off. When the
fairness metric performance increases, the accuracy performance will drop.

3.1 Fairness and Utility Trade-off

For prediction outcome discrimination, the published literature generally assumes
that there is a trade-off between fairness and utility (see Figure 4). This holds true for
the laboratory setting, where the three subsets (i.e. training, validation, and test sets)
are independent and identically distributed. It is ‘beneficial’ for all three subsets that
the models overassociate the fairness-sensitive features with class labels. As such,
the debiasing methods that decorrelate the undesirable correlations could sacrifice
the models’ performance, resulting in the fairness and utility trade-off. This trade-
off might not hold true in real-world situations, where there may be a domain shift
and the test data may be out-of-distribution (OOD) compared to the training data.
In that case, it is likely that debiasing techniques could boost both fairness and
utility if the test data originate from real-world applications [57]. Additionally, by
improving fairness through aleatoric uncertainty [56], the fairness-utility trade-off
could be optimized. This is a challenging topic and deserves further research from
the community.

3.2 Intersectional Fairness

Due to restrictions in the laboratory environment, intersectional fairness is compar-
atively understudied in the existing literature, which often focuses on minimizing
bias for one single sensitive feature. This simplified paradigm fails to recognize the
intersectional harms resulting from interacting systems of oppression [60, 27]. Inter-
sectionality refers to the ways in which discrimination manifesting in sociotechnical
systems can be hidden when evaluating fairness on distinct sensitive attributes, with-
out considering how identities and experiences might intersect in unique ways [10].
Intersectional fairness requires that the model prediction is roughly the same for all
groups defined by different intersections of protected attributes. It is also referred
to as compositional fairness in the literature as one person generally corresponds to
multiple sensitive attributes in real-world applications, for example, a 66-year-old
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Hispanic female. Recent years have witnessed a growing interest in intersectionality
in ML fairness. For example, early works such as [32] proposed multi-attribute fair-
ness definitions to prevent fairness gerrymandering at the intersections of protected
groups. It downweighs underrepresented groups, which arguably should be the fo-
cus of intersectional fairness. Differential fairness [21], motivated by differential
privacy, addresses this limitation. However, most current works consider intersec-
tionality simply as a multi-attribute problem, failing to critically engage with the
uniqueness and complexity of intersectionality such as the cultural differences, his-
tory, and context. A potential solution is to use geometry-based ML approaches to
identify intersectional groups and mitigate intersectional bias in the latent space [7].
The predominant way to define intersectional fairness in the literature also overem-
phasizes the attributes, leading to problems such as infinite regress and reinscription
of fairness gerrymandering [36]. A related yet different task is to jointly debias for
multiple protected attributes [8]. If the mitigation strategy only addresses one kind
of bias, such as gender bias, models can still exhibit other types of bias, such as
racial and age bias. Even worse, the reduction of one bias might amplify the mod-
els’ reliance on other biases for prediction [6, 8]. As a result, the models still suf-
fer significant discrimination if applied to real-world applications. More research is
needed to address the intersectional fairness problem [4, 60, 7].

3.3 Improving Fairness Without Demographics

Most existing methods assume that protected attribute annotations (i.e., demo-
graphic information) are available in the training set and use them to design mit-
igation methods. However, there are various kinds of problem with these protected
attribute annotations in real-world scenarios. For example, the annotations are not
available or are only partially available. Even for those with annotations, the pro-
tected attributes could be wrong and might not reflect the real information of the
users. This could happen mainly for regulatory and privacy reasons. For some ap-
plications, it is forbidden by law to collect sensitive information from end users.
Furthermore, some users may not be willing to share their information due to pri-
vacy concerns. Therefore, some mitigation methods propose to design mitigation
frameworks without using sensitive information [14]. Typical solutions include 1)
generating proxy annotations based on auxiliary tools and 2) active learning based
sampling schemes to reduce the annotation efforts. However, the experimental re-
sults indicate that mitigation algorithms without using ground-truth annotations
might achieve a worse fairness and accuracy trade-off. Therefore, more research
is required from the community to develop stronger mitigation algorithms without
relying on ground-truth protected attribute annotations.
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3.4 Long-term Fairness

The current literature generally focuses on static or one-shot settings that care only
about the static benefit of debiasing methods [40]. The key reason for debiasing
methods is to reduce discrimination against unprivileged groups. However, recent
research suggests that debiasing methods may ultimately harm the profits of disad-
vantaged groups after a certain period of time. As such, it is desirable to investigate
the long-term fairness of debiasing algorithms [24]. Specifically, as debiasing algo-
rithms are deployed in real-world applications, what is the performance of different
demographic groups after a couple of years? However, this is a challenging topic.
On the one hand, this is different from traditional machine learning practice in using
static metrics to evaluate fairness performance. We need to design new metrics to
access the long-term effect of fairness. Additionally, we often do not have data that
span a significant amount of time as a result of the restricted available data in the
laboratory setting. Existing work conducts studies through simulations [11], which
may not accurately reflect real-world scenarios.

Fig. 5 Four fairness levels. In this work, we mainly discussed the fairness problem from the com-
putational perspective. Beyond data bias and algorithmic bias, the definition of fairness metrics is
also an crucial topic. To define a suitable metric, we need to consider the ethical and law require-
ments, and also need to take the domain knowledge from the experts into consideration.

3.5 Fairness Metrics

It is a challenging task to assess whether a machine learning model has achieved
a fair result. There are two specific questions that need to be answered. First, what
metrics/measurements should we use to evaluate fairness performance? It should be
noted that different fairness metrics may be incompatible [48]. For example, a ma-
chine learning model may be fair under the demographic parity metric, but it would
achieve poor performance under the equality of odds metric. Second, after selecting
one specific fairness metric, how can we guarantee that a machine learning model is
fair? Does fairness mean achieving parity or reaching a certain preference [48]? In
Section 1.2, we mention that the performance of EOP and EOO should be as close
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to 0 as possible. This is called parity-based metrics and is typically used in the lit-
erature. In real-world applications, the desirable gap is not as small as possible. For
example, there is the 80% rule if we calculate the demographic parity ratio. As long
as the ratio between the unprivileged group and the privileged group is greater than
80%, we would consider the model to be a fair model. However, either the parity-
based requirement or the 80% rule are general rules, which might not be applicable
for a specific application.

To address these two questions, we must take into account factors such as ethical
criteria, law requirements, and the characteristics of the task (see Figure 5). In par-
ticular, experts in the domain of specific applications should be involved in defining
the desirable performance that a fair model should achieve. In addition, data scien-
tists, decision makers, and others affected by the use of the model are also suggested
to have a thorough discussion [50]. Eventually, we can make a more informed deci-
sion about which fairness metrics to use.

4 Connections with Other Directions of Trustworthy AI

Algorithmic fairness, as a subfield of trustworthy AI, has many interdisciplinary
research connections with other directions of trustworthy AI, such as explainability,
privacy, and efficiency.

4.1 Connection with Explainability

Explainability can be used as an effective tool to shed light on the decision-making
process of machine learning models. As such, explainability can be used to detect
biases in models and incorporated into the model training process to improve the
fairness of machine learning models [15].

• Detecting Bias in Biased Models. Machine learning models often rely on fairness-
sensitive features for prediction. For DNNs, the learned deep representations
could be biased by capturing bias information. As such, machine learning ex-
plainability can be used as a diagnostic tool to provide a thorough understanding
of the causes of model bias. On the one hand, post-hoc local explainability can
be employed to locate these features sensitive to fairness. On the other hand,
post-hoc global explainability can be applied to detect when biased information
has been captured in deep representations. A typical example is the concept ac-
tivation vector (CAV) method, which is a concept-based model interpretability
algorithm [33]. Consider the recruitment algorithm as an illustration. We can use
CAV to diagnose the model to determine whether gender information has been
captured in the intermediate representations of the DNN models.

• Improve Fairness. The key idea is to regularize the attention of machine learning
models, such as those introduced in Section 2.2.1. Specifically, the explanation
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algorithm will be incorporated into the overall loss function to regularize the
models’ training. For example, for the image caption task in the computer vision
domain, visual attention loss is proposed to provide guidance on the model’s
attention, with the aim of encouraging the model to rely on correct visual evi-
dence for prediction [57]. Experimental analysis indicates that the proposed reg-
ularization approach can dramatically minimize gender prediction errors while
maintaining competitive caption quality.

• Understanding the Debiased Models. Despite the fact that numerous debiasing
techniques have produced encouraging mitigating results, it is still unknown what
caused the improvement. Debiased models can be examined in this situation us-
ing explainability methods. For example, consider the debiasing algorithms that
add regularization to the entire model as introduced in previous sections. We can
use explainability to determine whether improved performance is due to debiased
representations or the refined classification head. This insight obtained would en-
able the community to create more effective debiasing algorithms.

Fig. 6 Trade-off between differential privacy and fairness. Image is taken from Bagdasaryan et
al. [1]. There is a certain unfairness for the original non-DP model. Privacy constraints would
exacerbate model bias, via increasing the accuracy gap.
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4.2 Connection with Privacy

The goal of differential privacy is to prevent the model from releasing sensitive
information about individuals. Despite the fact that differential privacy could help
to ensure privacy, it might also contribute errors to the task’s outputs. It is shown
that these errors may have distinct effects on various populations, and thus differ-
ential privacy might exacerbate model bias in many applications [20]. An example
is from the sentiment classification task [1], as shown in Figure 6. Before applying
the differential privacy algorithm, there is little accuracy disparity between standard
American English and African American English. On the contrary, after imposing
differential privacy constraints, there exist more than 10% accuracy gaps between
these two groups. The overall accuracy drop comes mainly from the underrepre-
sented African-American group. Furthermore, as privacy increases, the disparity
between two groups also increases. Therefore, it is desirable to design algorithms
that could simultaneously improve privacy and fairness.

4.3 Connection with Efficiency

Nowadays, DNN models are being increasingly used in real-world applications with
latency and capacity constraints, such as in edge devices. Toward this end, there is
a need to compress large DNN models into smaller ones using compression tech-
niques such as knowledge distillation, pruning, matrix decomposition, and quanti-
zation. The current literature focuses on evaluation schemes that calculate overall
accuracy and asserts that model performance can be preserved during compression.
However, compressed models have disproportionately high errors in a small subset
of samples [31]. This category includes disadvantaged and underrepresented groups
such as women and African Americans. In other words, compression could amplify
the model bias. For this reason, it is desirable to develop more equitable compres-
sion strategies that do not undermine the benefit of the model. On the plus side, this
finding indicates that compression can automatically expose more difficult examples
and thus could offer proxy annotations on the protected attributes that are dispro-
portionately affected by compression. Equipped with these proxy annotations, we
can design better mitigation solutions even without ground-truth annotations for the
protected attribute.

5 Conclusions

In this chapter, we provide a comprehensive review of the current state of knowledge
in this critical area of fairness in machine learning. First, we divide algorithmic fair-
ness into two broad categories: prediction outcome discrimination and prediction
quality parity. Based on this categorization, we introduce some typical fairness met-
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rics. Second, we have discussed representative bias mitigation algorithms, from pre-
processing, in-processing and post-processing three perspectives. Lastly, we further
introduce research challenges and the connection of fairness in machine learning
with other sub-areas of trustworthy AI.
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